- Help Center
- Machine Learning
- Supervised
-
Data Science Bootcamp
-
Python Programming
-
Machine Learning
-
Data Analysis
-
Pricing
-
Registration
-
R Language
-
SQL
-
Power BI
-
Homework and Notebooks
-
Platform Related Issues
-
Programming and Tools
-
Large Language Models Bootcamp
-
Blog
-
Employment Assistance
-
Partnerships
-
Data Science for Business
-
Python for Data Science
-
Introduction to Power BI
Explain the Random Forest Model
The underlying principle of this technique is that several weak learners combine to provide a strong learner. The steps involved are:
- Build several decision trees on bootstrapped training samples of data
- On each tree, each time a split is considered, a random sample of mm predictors is chosen as split candidates out of all pp predictors
- Rule of thumb: At each split m=p√m=p
- Predictions: At the majority rule