- Help Center
- Python Programming
-
Data Science Bootcamp
-
Python Programming
-
Machine Learning
-
Data Analysis
-
Pricing
-
Registration
-
R Language
-
SQL
-
Power BI
-
Homework and Notebooks
-
Platform Related Issues
-
Programming and Tools
-
Large Language Models Bootcamp
-
Blog
-
Employment Assistance
-
Partnerships
-
Data Science for Business
-
Python for Data Science
-
Introduction to Power BI
How will you identify and deal with missing values in a dataframe?
We can identify if a dataframe has missing values by using the isnull() and isna() methods.
missing_data_count=df.isnull().sum()
We can handle missing values by either replacing the values in the column with 0 as follows:
df[‘column_name’].fillna(0)
Or by replacing it with the mean value of the column
df[‘column_name’] = df[‘column_name’].fillna((df[‘column_name’].mean()))