- Help Center
- Machine Learning
- Supervised
-
Data Science Bootcamp
-
Large Language Models Bootcamp
-
Agentic AI Bootcamp
-
Registration
-
Pricing
-
Community
-
Python Programming
-
Platform Related Issues
-
Bootcamps
-
Homework and Notebooks
-
Free Courses
-
Data Science for Business
-
Practicum
-
Blog
-
Employment Assistance
-
Machine Learning
-
Data Analysis
-
R Language
-
Python for Data Science
-
SQL
-
Introduction to Power BI
-
Power BI
-
Programming and Tools
-
Partnerships
What is loss functions?
At its core, a loss function is incredibly simple: It’s a method of evaluating how well your algorithm models your dataset. If your predictions are totally off, your loss function will output a higher number. If they’re pretty good, it’ll output a lower number. As you change pieces of your algorithm to try and improve your model, your loss function will tell you if you’re getting anywhere.
Loss functions are related to model accuracy, a key component of AI/ML governance.
We can design our own (very) basic loss function to further explain how it works. For each prediction that we make, our loss function will simply measure the absolute difference between our prediction and the actual value. In mathematical notation, it might look something like abs(y_predicted – y).