- Help Center
- Machine Learning
-
Data Science Bootcamp
-
Python Programming
-
Machine Learning
-
Data Analysis
-
Pricing
-
Registration
-
R Language
-
SQL
-
Power BI
-
Homework and Notebooks
-
Platform Related Issues
-
Programming and Tools
-
Large Language Models Bootcamp
-
Blog
-
Employment Assistance
-
Partnerships
-
Data Science for Business
-
Python for Data Science
-
Introduction to Power BI
what is the difference between True Positive, True Negative, False Positive – Type 1 Error and False Negative – Type 2 Error?
Type I error is committed when the null hypothesis is true and we reject it, also known as a ‘False Positive’. Type II error is committed when the null hypothesis is false and we accept it, also known as ‘False Negative’.
In the context of confusion matrix, we can say Type I error occurs when we classify a value as positive (1) when it is actually negative (0). Type II error occurs when we classify a value as negative (0) when it is actually positive(1)